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Research

Outdoor air pollution contributes significantly 
to global increases in mortality, particularly 
within urban environments (Brunekreef and 
Holgate 2002; Burnett et al. 2000). Some 
health effects of air pollution may occur over 
time from chronic exposure, as with bronchi-
tis and lung cancer (Brunekreef and Holgate 
2002). Other health effects occur more 
abruptly, as with acute respiratory symptoms, 
decreased lung function, and cardiovascular 
effects (Brunekreef and Holgate 2002). 
Despite these adverse health outcomes, the 
underlying molecular mechanisms associating 
air pollutant exposure with disease remain 
largely unknown. To contribute to the under-
standing of air-pollutant–induced health 
effects, we used an in  vitro model system 
involving short-term air exposures to identify 
new cellular mechanisms potentially influenc-
ing air toxic responses.

To link air pollution exposure to health 
outcomes, it is important to accurately 
characterize exposure conditions by under
standing air pollution chemistry. Within 
urban environments, primary pollutants such 
as nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) are emitted into the 
atmosphere. These primary pollutants then 
react to generate various secondary prod-
ucts, including ozone, peroxyacetyl nitrate, 
formaldehyde, and other carbonyls [U.S. 
Environmental Protection Agency (EPA) 
2006]. This complex atmospheric chemis-
try creates an environment that is constantly 
changing, making it difficult to understand 
the causes and mechanisms of air-pollutant–
induced disease.

Our study builds on an investigation 
comparing human lung cell responses to dif-
ferent air pollutant mixtures (Sexton et al. 
2004). That study showed significant increases 
in the release of inflammatory cytokines in 
lung cells exposed to photochemically altered 
(PCA) air pollutants. In the present study, we 
further investigated this response by imple-
menting a toxicogenomic approach to com-
pare the genomewide transcriptional profiles 
of lung cells exposed to primary emitted pol-
lutant mixtures relative to PCA air mixtures. 
Toxicogenomic studies can be used to assess 
genomewide alterations in mRNA levels, pro-
viding information on the genes and biological 

pathways that are modified by environmental 
exposures (McHale et al. 2010). To our knowl-
edge, this is the first study to use a toxico
genomic approach to compare the genomic 
changes resulting from primary and PCA air 
pollutant mixture exposures.

In this study we investigated the toxico
genomic response of lung cells exposed to gas-
eous mixtures that represent urban atmospheric 
conditions. Specifically, we analyzed the tran-
scriptomic response of cells exposed to com-
mon air pollutants reacting photochemically 
with sunlight. By using an environmental irra-
diation chamber, we compared gene expres-
sion patterns and inflammatory responses in 
cells exposed to complex mixtures representing 
primary pollutants and PCA pollutants.

Materials and Methods
Generation of pollutant mixtures. We used the 
University of North Carolina–Chapel Hill’s 
outdoor environmental irradiation chamber 
(120 m3 volume) to prepare exposure con-
ditions. Outdoor environmental irradiation 
chambers are photochemical reactors that use 
sunlight to initiate the natural photochemical 
transformation chemistry of air pollutants 
(Jeffries 1995; Jeffries et al. 1976; Sexton et al. 
2004). Synthetic Urban Mix (Scott Specialty 
Gases, Plumsteadville, PA), a VOC mixture, 
and NOx [nitric oxide (NO) and nitrogen 
dioxide (NO2)] were used as the starting mate-
rial for the test atmosphere. Synthetic Urban 
Mix contains 55 different hydrocarbons at 
specific ratios that represent chemicals pres-
ent in urban atmospheres (Jeffries and Sexton 
1995). On the morning of the exposure day, 
the chamber was naturally humidified by pre
flushing with HEPA-filtered ambient air. At 
0715 hours, the volatile organics of Synthetic 
Urban Mix were drawn from a gas cylinder 
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Background: Air pollution contributes significantly to global increases in mortality, particularly 
within urban environments. Limited knowledge exists on the mechanisms underlying health effects 
resulting from exposure to pollutant mixtures similar to those occurring in ambient air. In order 
to clarify the mechanisms underlying exposure effects, toxicogenomic analyses are used to evaluate 
genomewide transcript responses and map these responses to molecular networks. 

Objectives: We compared responses induced by exposure to primary pollutants and photo­
chemically altered (PCA) pollutant mixtures representing urban atmospheres to test our hypothesis 
that exposures to PCA pollutants would show increased modulation of inflammation-associated 
genes and pathways relative to primary air pollutants.

Methods: We used an outdoor environmental irradiation chamber to expose human lung epithelial 
cells to mixtures representing either primary or PCA pollutants for 4 hr. Transcriptional changes 
were assessed using microarrays and confirmed using quantitative real-time reverse-transcription 
polymerase chain reaction (qRT-PCR) on a subset of genes.

Results: We found a large difference in the cellular responses to the two pollutant exposures: 
Primary air pollutants altered the expression levels of 19 genes, whereas PCA pollutants altered 
709 genes. Functional and molecular analyses of the altered genes revealed novel pathways, such as 
hepatocyte nuclear factor 4α, potentially regulating the pollutant responses. Chemical component 
analysis characterized and confirmed the photochemical transformation of primary air pollutants 
into PCA air pollutants.

Conclusions: Our study shows that the photochemical transformation of primary air pollutants 
produces altered mixtures that cause significantly greater biological effects than the primary pollut­
ants themselves. These findings suggest that studying individual air pollutants or primary pollutant 
mixtures may greatly underestimate the adverse health effects caused by air pollution.
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into the environmental irradiation chamber 
while a liquid mixture containing less-volatile 
organics was injected into the chamber. In 
addition, NOx was drawn from a gas cylinder 
(AirGas National Welders, Morrisville, NC) 
into the chamber to establish a test atmosphere 
containing 2 ppm carbon Synthetic Urban 
Mix and 0.2 ppm NOx. This test atmosphere 
remained inside the environmental irradiation 
chamber throughout the day, where sunlight 
induced photochemical reactions among the 
mixture’s compounds and secondary products 
were generated.

Cell culture. Human A549 type II lung 
epithelial cells, derived from a human lung 
adenocarcinoma, were cultured according to 
standard protocol (ATCC, Manassas, VA). 
Cells were grown as described previously 
(Jaspers et al. 1997; Sexton et al. 2004) and 
plated onto 24‑mm-diameter collagen-coated 
membranes with 0.4‑μm pores (Trans-CLR; 
Costar, Cambridge, MA). Immediately before 
exposure, media were removed to create direct 
air–liquid interface culture conditions, as pre-
viously described (Jaspers et al. 1997; Sexton 
et al. 2004).

Exposure to pollutant mixtures. We used 
a coupled chamber–in vitro exposure system 
for this study (Sexton et al. 2004). Sample 
lines directly linked the environmental irra-
diation chamber’s mixture to a cellular expo-
sure chamber (Modular Incubator Chamber; 
Billups-Rothenberg, Del Mar, CA), where air 
exposures were continuously drawn through 
at 1.0 L/min. The 8‑L cellular exposure cham-
ber was positioned within an incubator (set at 
37°C), where CO2 was added to the exposure 
source stream at 0.05 L/min, and a small water 
dish provided humidification to maintain cell 
viability and match control conditions.

The first exposure was in the morning, 
representing the primary pollutant mixture 
exposure. Lung cells were exposed for 4 hr 
(0815–1215 hours), and time-matched control 
cells were exposed to incubator air. The sec-
ond exposure was in the evening, representing 
the PCA pollutant mixture, which contained 
primary pollutants and secondary products 
of irradiation chemistry. For this treatment, 
prepared lung cells were exposed for 4 hr 
(1630–2030 hours), and another set of mock-
treated control cells were exposed to incubator 
air. For each exposure period, 4 exposed and 
4 unexposed samples were used, resulting in 
a total of 16 total samples. Cells were incu-
bated for 9 hr after each respective exposure 
period. Cells were then scraped and stored at 
–80°C in TRIzol® Reagent (Invitrogen Life 
Technologies, Carlsbad, CA), and supernatants 
were aspirated and stored at –80°C.

Chemical analysis of atmospheric mixtures. 
We used gas measurement methods to assess 
the chemical constituents inside the cham-
ber during the experiment. Volatile organic 

hydrocarbon levels were measured five times 
during the experiment using a Varian STAR 
3400 DB-1 capillary gas chromatograph-flame 
ionization detection (Scientific Instruments, 
Cary, NC) with a Varian Saturn 2000 ion trap 
mass spectrometer. Ozone was measured every 
minute using a U.S. EPA equivalent method 
(EQOA-0193-091; U.S. EPA. 2011) based 
on ultraviolet photometry with a Teledyne 
model  9811 monitor (Teledyne Monitor 
Labs, Englewood, CO). NO and NO2 levels 
were measured every minute using a U.S. EPA 
standard reference method (RFNA-1292-090; 
U.S. EPA. 2011) based on chemiluminescence 
with a Teledyne model 9841 NOx analyzer. 
Formaldehyde concentrations were measured 
continuously using a Dasgupta diffusion-tube 
sampler (Dasgupta et al. 1988). Peroxyacetyl 
nitrate levels were measured every 30 min 
using a Varian CP-3800 gas chromatograph 
with an electron capture detector. A scanning 
mobility particle sizer, with a model 3080 elec-
trostatic classifier, and a model 3025a ultrafine 
condensation particle counter (both from TSI 
Inc., Shoreview, MN) were used to detect pos-
sible particulate matter formation.

Analysis of cytotoxicity. To measure cyto-
toxicity, we measured the enzyme lactate 
dehydrogenase (LDH) within the supernatant 
of each sample using a coupled enzymatic 
assay (Clontech Laboratories, Inc., Mountain 
View, CA) according to the manufacturer’s 
instructions. For each exposure period, four 
unexposed and four exposed sample wells 
were analyzed in technical triplicate for a total 
of 24 measurements. Scanned absorbance 
reading outliers were identified through the 
Grubbs’ test, where outliers were identified as 
those with < 5% probability of occurring as 
an outlier by chance alone, relative to a nor-
mal distribution (Grubbs 1969). Fold increase 
was calculated by dividing the mean LDH 
level of exposed cells by that of unexposed 
cells. Statistical significance of LDH levels in 
the exposed versus unexposed cells, as well as 
the PCA-pollutant–induced versus primary-
pollutant–induced LDH levels, was calculated 
using an unpaired t‑test with Welch’s correc-
tion (Welch 1938).

Microarray processing. Total RNA 
was isolated from unexposed and exposed 
cells using an RNeasy® Mini Kit (Qiagen, 
Valencia, CA) according to the manufac-
turer’s protocol. RNA was quantified with 
the NanoDrop™ 1000 Spectrophotometer 
(Thermo Scientific, Waltham, MA), and 
its integrity was verified with a model 2100 
bioanalyzer (Agilent Technologies, Santa 
Clara, CA). RNA was biotin labeled accord-
ing to the Affymetrix protocol and hybrid-
ized to Affymetrix GeneChip® Human Gene 
1.0 ST arrays (Affymetrix Inc., Santa Clara, 
CA), which probe for 28,869 genes. Samples 
were assessed in biological duplicate for each 

exposure condition—primary pollutant expo-
sures and time-matched unexposed controls, 
and PCA pollutant exposures and time-
matched unexposed controls—for a total of 
eight microarray samples. 

Microarray analysis. Microarray data were 
first normalized using robust multichip aver-
age (Irizarry et al. 2003). Genes with signal 
intensities < 30 (10% of the average signal 
intensity) in all conditions were removed from 
the analysis to eliminate background noise. 
This resulted in a reduction of probe sets from 
28,869 for each condition to 24,652 for pri-
mary pollutant conditions and 24,830 for 
PCA pollutant conditions. Differential gene 
expression was defined as a significant differ-
ence in mRNA levels between exposed versus 
unexposed samples, where the following three 
statistical requirements were set: a) fold change 
of ≥ 1.5 or ≤ –1.5 (exposed vs. unexposed); 
b) p < 0.05 [analysis of variance (ANOVA)]; 
and c) a false discovery rate corrected q‑value 
< 0.05. ANOVA p‑values were calculated 
using Partek® Genomics Suite™ software 
(Partek, Inc., St. Louis, MO). To control the 
rate of false positives, q‑values were calculated 
as the minimum positive false discovery rate 
that can occur when identifying significant 
hypotheses (Storey 2003). Microarray data 
have been submitted to the National Center 
for Biotechnology Information (NCBI) Gene 
Expression Omnibus repository (Edgar et al. 
2002) and are available under accession no. 
GSE23735 (NCBI 2010).

Quantitative reverse-transcription poly-
merase chain reaction (RT-PCR) verifica-
tion of mRNA expression. Expression levels 
of genes selected based on magnitudes of 
toxicant-induced fold changes were vali-
dated using quantitative real-time RT‑PCR 
(qRT-PCR). We used QuantiTect Primer 
Assays (Qiagen) for glutamine-fructose-6-
phosphate transaminase 2 (GFPT2; catalog 
no. QT00007854), 2´,5´‑oligoadenylate syn-
thetase 1 (OAS1; catalog no. 00099134), and 
ATPase, class I, type 8B, member 1 (ATP8B1; 
catalog no. QT00038094) with the Qiagen 
QuantiTect SYBR® Green PCR kit and 
Roche Lightcycler 480 (Roche Diagnostics 
Corp., Indianapolis, IN). Fold changes 
between exposed and unexposed samples were 
calculated based on cycle time values and nor-
malized to the β‑actin housekeeping gene. 
Statistical significance of the exposed versus 
unexposed transcript levels, as well as the pri-
mary versus PCA-induced transcript changes, 
was calculated using an unpaired t‑test.

Network analysis and enriched biological 
functions. Molecular networks and biological 
functions associated with air pollutant expo-
sure were identified using the Ingenuity data-
base (Ingenuity® Systems, Redwood City, CA). 
The Ingenuity database provides a collection 
of gene-to-phenotype associations, molecular 
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interactions, regulatory events, and chemical 
knowledge accumulated to develop a global 
molecular network. The lists of differentially 
expressed genes were overlaid onto this global 
molecular network, where related networks 
were algorithmically constructed based on con-
nectivity. We evaluated significance for each 
constructed network using the following equa-
tion, based on Fisher’s exact test (Calvano et al. 
2005):
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Here, N is the total number of molecules in 
Ingenuity’s global network, which contains 
D  total proteins encoded by differentially 
expressed genes. Each individual network 
contains n molecules, d of which are proteins 
encoded by differentially expressed genes 
(Calvano et al. 2005). The p‑value is the sum-
mation of each fraction, calculated across all 
ds , represented by i = 0, 1, 2, 3, . . . , d – 1. 
C is the binomial coefficient, calculated using 
the following equation (Daniel 2009): 

	 C(N,n) = N! ÷ [n!(N! – n)!]. 	 [2]

Only networks with p < 10–12 were evaluated. 
We performed functional analysis to iden-

tify biological functions and disease signatures 
significantly associated with the differentially 
expressed genes. Statistical significance of 
each biological function or disease was calcu-
lated using a right-tailed Fisher’s exact test. 
Functions with p ≤ 3.0 × 10–6 were considered 
significant.

Transcription factor binding site analy-
sis. We performed transcription factor bind-
ing site analysis using EXPANDER software 
(version 5.1; Algorithms in Computational 
Genomics at Tau 2010). Affymetrix probe 
sets were linked to sequence data in regions 

1,000 base pairs upstream and 200 base pairs 
downstream of the transcription start sites. 
These sequence data were then analyzed for 
significant enrichment of transcription factor 
binding site sequences. p‑Values represent the 
probability of obtaining an equal or greater 
number of matched binding site sequences 
using a randomly drawn sample of the same 
size as the input sequence set.

Inflammatory cytokine release. Protein 
levels of the cytokine interleukin (IL)-8 were 
measured using the supernatant samples. An 
OptEIA™ human IL‑8 enzyme-linked immuno
sorbent assay (ELISA) (BD Biosciences, San 
Jose, CA) was performed and analyzed accord-
ing to the manufacturer’s protocol. Scanned 
absorbance-reading outliers were identified, 
and statistical significance was calculated using 
the same method as for the LDH analysis. The 
fold increase of IL‑8 was calculated by dividing 
mean IL‑8 levels of exposed cells by those of 
unexposed cells.

Results
Chemical analysis of exposure conditions. We 
exposed human lung cells to mixtures repre-
senting either primary air pollutants or PCA 
air pollutants, which contain secondary chemi-
cal products. To assess the gas composition of 
the exposures, we measured concentrations 
of > 40 reactive chemical species within the 
environmental irradiation chamber through-
out the exposure periods. Average NO2 and 
NO levels decreased across the day, whereas 
levels of secondary chemical products, such 
as ozone, formaldehyde, and peroxyacetyl 
nitrate, increased (Table 1, Figure 1). Levels 
of most hydrocarbons decreased throughout 
the experiment (e.g., the aromatic compound 
toluene). More stable hydrocarbons, including 
n‑hexane and benzene, remained stable across 

both exposures. No particulate matter or sec-
ondary organic aerosol was formed within the 
chamber (data not shown). For levels of all 
VOCs detected during both exposure periods, 
see Supplemental Material, Table 1 (http://
dx.doi.org/10.1289/ehp.1003323).

It is important to recognize that the pri-
mary pollutant exposure did not contain 
completely fresh, unreacted compounds. As 
measured in the chemical analysis (Figure 1), 
some of the starting chemicals reacted 
throughout the primary pollutant exposure 
period. However, most of the photochemical 
aging reactions occurred during the afternoon, 
because outdoor conditions were cloudy until 
approximately 1200 hours. For simplicity, 
we refer to the morning exposure as the pri-
mary pollutant exposure and the afternoon 
exposure as the PCA pollutant exposure, rec-
ognizing that it is impossible for laboratory-
generated mixtures to simulate these exposure 
conditions precisely.

Cytotoxicity measurements. We measured 
the release of LDH from lung cells after expo-
sure. Lung cell death was greater after exposure 
to PCA pollutants (LDH fold increase = 9, 
p < 0.001) than after exposure to primary pol-
lutants (LDH fold increase = 1.6, p < 0.07). 
The difference in LDH fold increase between 
the PCA pollutant–induced fold increase in 
LDH and the primary pollutant–induced fold 
increase in LDH was significant (p < 0.001). 

Gene expression analysis. Lung cells were 
exposed to two different gaseous conditions: 
primary air pollutants in the morning and PCA 
pollutants in the afternoon. Each exposure 
condition was performed alongside untreated 
control samples. After exposure, we extracted 
mRNA from the cells and assessed relative tran-
script abundance using Affymetrix GeneChip® 
Human Gene 1.0 ST microarrays.

Table 1. Average concentrations (ppb) of com-
pounds measured throughout the exposure periods. 

Pollutant exposure
Chemical Primary PCA 
Ozone 22 141
NO 130 6
NO2 213 119
Formaldehyde 18 29
Peroxyacetyl nitrate 0 62
Hydrocarbons (ppb carbon)

Alkanes 872 378
n-Hexane 15 15

Alkenes 76 8
1-Octene 11 0

Aromatics 451 193
Benzene 35 31
Toluene 121 73

Exposure periods: primary pollutants, 0815–1215 hours; 
PCA pollutants, 1630–2030 hours. Examples are listed for 
each hydrocarbon group. For the complete hydrocarbon 
listing, see Supplemental Material, Table 1 (http://dx.doi.
org/10.1289/ehp.1003323). 

Figure 1. Chemical component analysis of the chamber exposure conditions showing levels of NO, NO2, 
ozone (O3), formaldehyde (HCHO), and peroxyacetyl nitrate (PAN). 
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Lung cells exposed to the primary pollut-
ant mixture showed differential expression 
of 19 genes, 15 with increased expression 
and 4  with decreased expression levels 
(Figure 2A). In contrast, the PCA pollutant 
exposure caused changes in the expression lev-
els of 709 genes. Of these genes, 190 showed 
increased expression levels and 519 showed 
decreased levels (Figure 2A). Among these 
two lists, 14 overlapping genes were differ-
entially expressed in response to both pollut-
ant mixtures [for a complete listing of genes 
with significant changes in expression for the 
two exposure conditions, see Supplemental 

Material, Table 2 (http://dx.doi.org/10.1289/
ehp.1003323)]. Expression levels changed to 
a greater extent after PCA pollutant exposure 
than after primary pollutant exposure for 13 of 
the 14 overlapping genes. The extreme dif-
ference in the number of genes differentially 
expressed in response to PCA versus primary 
pollutant exposures persisted when parameters 
used to filter the data were altered (minimum 
fold change set to ± 1.5 and then required 
ANOVA p‑values set to < 0.2 to < 0.0001) in 
a sensitivity analysis (data not shown).

Validation of expression changes through 
qRT-PCR. We used qRT-PCR to validate 

three genes selected based on their exposure-
induced fold change magnitudes. From 
microarray analysis, GFPT2 and OAS1 were 
significantly up-regulated in expression and 
ATP8B1 was significantly down-regulated 
by both primary and PCA pollutant expo-
sures [see Supplemental Material, Table 2 
(http://dx.doi.org/10.1289/ehp.1003323)]. 
PCR analysis confirmed significant (p < 0.05) 
up-regulation by air pollutant exposure in 
GFPT2 (fold change = 1.85 and 4.52 for pri-
mary pollutants and PCA pollutants, respec-
tively) and OAS1 (fold change = 1.95 and 
3.54; Figure  2B). PCR analysis also con-
firmed significant (p < 0.05) down-regulation 
of ATP8B1 (fold change = –1.46 and –3.12).
Furthermore, PCR analysis confirmed that 
these genes showed significantly (p < 0.05) 
greater fold change after exposure to PCA 
pollutants relative to primary pollutants.

Network analysis and biological func-
tions. To identify potential biological path-
ways affected by air pollutant exposure in 
lung cells, the gene lists were overlaid onto 
molecular network maps. We algorithmically 
constructed networks containing the identi-
fied genes based on connectivity and known 
relationships among molecules. The 19 genes 
with altered expression from primary pol-
lutant exposure generated one significant 
network (p < 10–25; Figure 3). This network 

Figure 2. Air pollutant mixtures alter gene expression profiles in human lung cells. (A) Heat map showing 
average gene expression fold change (FC) of 714 total genes modulated by exposure to primary pollutant 
and/or PCA pollutant mixture. (B) qRT-PCR results displaying FC gene expression (mean ± SE). 
*p < 0.05 compared with the control or the other exposure condition.
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consists of 35 total proteins, 9 of which are 
encoded by genes differentially expressed after 
primary pollutant exposure [see Supplemental 
Material, Table 3 (http://dx.doi.org/10.1289/
ehp.1003323)]. Within this network, proteins 
that are associated with hepatocyte nuclear 
factor 4α (HNF4α) signaling showed altered 
expression levels (see Supplemental Material, 
Figure 1). There are also gene products related 
to cancer, respiratory disease, and inflamma-
tion, such as chemokine (C‑C motif) ligand 2 
(CCL2; also known as MCP 1).

Overlaying the 709 PCA-pollutant–
altered genes resulted in the generation of 
25  significant networks [p‑values rang-
ing from 10–12 to 10–52; see Supplemental 
Material, Table 3 (http://dx.doi.org/10.1289/
ehp.1003323)]. These 25 networks consist of 
838 total proteins, 458 of which are encoded 
by genes differentially expressed after exposure 
to PCA pollutants Interestingly, we identified 
a large interacting protein network (i.e., inter
actome) containing 23 of the 25 networks 
modulated by PCA pollutants (p < 10–12; 
Figure 3). Within this interactome, we iden-
tified a highly significant (p < 10–52) smaller 
network (Figure  4) showing enrichment 
for the HNF4α pathway. As an alternative 
approach to the analyses, we used g:Profiler 
(Bioinformatics, Algorithmics and Data 
Mining Group 2011), which interprets gene 
lists by identifying enriched protein–pro-
tein interactions using the BioGRID data-
base (BioGRID 2011). We also found the 
enrichment for proteins involved in HNF4α 
signaling using this alternative method (see 
Supplemental Material, Figure 2). Another 
network identified within the PCA-induced 
interactome shows a significant enrichment 
of proteins involved in inflammation linked 
to IL‑8 and activator protein-1 (AP‑1) signal-
ing (p < 10–27) (see Supplemental Material, 
Figure 3). These subnetworks contain proteins 
known to be related to cancer, inflammation, 
cardiovascular disease, and respiratory disease.

To further understand the biological 
effects of air pollutant exposure, we queried 
the constructed networks for biological pro-
cesses and disease signatures. The network 
associated with primary pollutant exposure 
showed significant association with one dis-
ease signature—cancer [p  =  3 × 10–6; see 
Supplemental Material, Figure  4 (http://
dx.doi.org/10.1289/ehp.1003323)]. PCA 
pollutant exposure, on the other hand, modi-
fied the expression of genes whose protein 
products are associated with 10 different bio-
logical processes (see Supplemental Material, 
Figure 4) including cancer (p < 1.9 × 10–12), 
cellular movement (p < 7.0 × 10–10), cellular 
growth and proliferation (p < 4.2 × 10–7), 
tissue development (p  < 1.5 × 10–6), and 
cardiovascular disease (p < 1.8 × 10–6). As 
an alternative approach, we also performed 

a disease signature enrichment analysis using 
the functional annotation tool within the 
Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) (Huang et al. 
2009). Similar disease categories were identi-
fied as enriched using this alternate database 
(see Supplemental Material, Table 4).

Transcription factors predicted to regulate 
response. We performed transcription fac-
tor binding site analysis to predict regulatory 
mechanisms that potentially underlie gene 
expression changes associated with air pol-
lution exposure. For the primary pollutants, 
analysis of the promoter regions of the 19 dif-
ferentially expressed genes identified signifi-
cant (p < 0.05) enrichment for binding sites 
of 17 transcription factors [see Supplemental 
Material, Table 5 (http://dx.doi.org/10.1289/
ehp.1003323)]. In the PCA pollutant gene 
set, 53 transcription factors with significantly 
(p < 0.05) enriched binding sites were pre-
dicted (see Supplemental Material, Table 5). 
Comparison of the transcription factors 
associated with primary and PCA pollutant 
exposure revealed six common, overlapping 
transcription factors predicted to regulate the 
genomic responses to both exposure condi-
tions. All six of these transcription factors 
are associated with genes that showed down-
regulation upon exposure to air pollutants. 

The overlapping transcription factors with 
the most significant p‑values were hepatocyte 
nuclear factor 1 (HNF1; p = 0.003), nuclear 
transcription factor  Y(NF‑Y; p  = 0.005), 
and POU class 2 homeobox 1 (Oct-1; p = 
0.014). All predicted targets are included in 
Supplemental Material, Table 5.

Inflammatory cytokine IL‑8 release. 
Analysis showed that only a small amount 
of IL‑8 was released from lung cells 
exposed to primary pollutants (average fold 
increase = 1.14; p = 0.50) compared with IL‑8 
release after exposure to PCA pollutants (aver-
age fold increase = 3.79; p < 0.001).

Conservation of genes modified from air 
toxics exposures. To gain further insight into 
the genes dysregulated by air toxics expo-
sure, we compared our results with those of 
an existing genomic database from a study 
analyzing human lung epithelial cells exposed 
to cigarette smoke (Maunders et al. 2007). 
We performed this analysis because many 
chemicals are present in both cigarette smoke 
and PCA pollutant exposures, including ben-
zene, formaldehyde, toluene, NOx, and vari-
ous other hydrocarbons (U.S. EPA 1992). In 
the cigarette smoke study (Maunders et al. 
2007), microarray analysis was performed 
to identify differentially expressed genes in 
lung cells at 1, 6, and 24 hr postexposure. 

Figure 4. HNF4α signaling is altered by PCA pollutant exposure, as shown by the most significant network 
within the PCA-pollutant–associated interactome. Symbols represent protein products of up-regulated 
genes (red) and down-regulated genes (green). NF‑Y, nuclear transcription factor Y.
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In the present study, we identified a total of 
52 genes with differential expression associ-
ated with cigarette smoke exposure (across 
all three time points) and PCA pollutants, 
32 of which are down-regulated in all condi-
tions [see Supplemental Material, Table 6 
(http://dx.doi.org/10.1289/ehp.1003323)]. 
We used molecular network analysis to ana-
lyze the list of 32 air-toxics–modulated genes. 
The most significant (p < 10–25) network is 
enriched for the HNF4α signaling pathway 
(see Supplemental Material, Figure 5).

Discussion
In this study, we compared the expression 
levels of > 25,000 genes in human lung epi-
thelial cells exposed to mixtures representing 
either primary or PCA air pollutants. The 
complex air pollutant mixtures were gener-
ated in an outdoor environmental irradiation 
chamber simulating urban exposure condi-
tions. The primary pollutant mixture con-
tained compounds in fresh emissions at the 
early stages of atmospheric chemistry. In con-
trast, the PCA pollutant mixture consisted of 
compounds humans are exposed to in photo
chemically aged outdoor urban environments, 
with higher concentrations of reaction prod-
ucts formed from primary pollutants reacting 
throughout the day (Jeffries and Sexton 1995; 
Sexton et al. 2004).

Chemical component analysis of 43 com-
pounds verified that the pollution chemistry 
analyzed within the environmental irradia-
tion chamber was similar to urban air photo
chemistry (Jeffries and Sexton 1995). More 
specifically, levels of primary air pollutants, 
including NOx and multiple VOCs, decreased 
throughout the experiment and were lower in 
the PCA pollutant mixture. At the same time, 
chemical reactions among NOx, VOCs, and 
sunlight generated secondary products present 
at higher concentrations in the PCA mixture, 
including ozone, formaldehyde, and peroxy
acetyl nitrate. In general, the chemical concen-
trations within the PCA pollutant exposure 
were higher than most ambient levels but still 
comparable (Jeffries and Sexton 1995). For 
example, the average ozone concentration 
during the PCA exposure was approximately 
140 ppb. Although this ozone level is con-
sidered high for most areas, concentrations 
≥ 120 ppb have frequently been measured in 
certain cities as daily 1‑hr maximum concen-
tration levels (U.S. EPA 2006). Although we 
measured > 40 compounds, other chemicals 
in addition to those directly measured likely 
contributed to the observed cellular responses. 
Clearly, a complete chemical characterization 
of all chemicals was not possible.

In our study, we performed complex air 
chemistry exposures using an in vitro expo-
sure system that allows direct exposures 
between chemically and physically unaltered 

air pollutants and target cells. We recognize 
that this setup does not completely mimic 
the in vivo human respiratory system. For 
example, in vivo the fluid layer coating lung 
epithelial cells contains proteins and anti
oxidants (Cross et al. 1994) that may mitigate 
the toxicity of inhaled chemicals. In addition, 
multiple cell types within the respiratory sys-
tem may interact and influence inhalation 
responses in ways we are currently unable 
to simulate. Although A549 cells have been 
proposed as a standardized model to study 
lung epithelium (Foster et al. 1998), they are 
tumorous cells that may respond differently 
than primary cell lines. Still, the experimental 
setup fulfills our aim to perform a novel base-
line study that generates testable hypotheses 
to be pursued mechanistically.

We found through our genomics analysis 
that exposure to primary pollutants altered the 
expression of only 19 genes, whereas exposure 
to PCA pollutants altered the expression of 
709 genes. In addition, there was a difference 
in cytotoxicity. However, the differences in 
gene expression were unlikely to be related 
to this differential cytotoxicity. In support of 
this, it has been shown in various eukaryotic 
cell types that extent of genomic change is not 
associated with cell death (Jelinsky et al. 2000; 
Tsukue et al. 2010).

To identify molecular pathways influenced 
by exposure to air pollutants, the differen-
tially expressed genes were integrated with 
their protein products and queried for known 
interactions. A significant difference was evi-
dent between the number of altered networks 
associated with exposure to primary and PCA 
pollutants. These results suggest that exposure 
to secondary reactive species created through 
photochemical reactions induces greater 
changes in lung cell molecular network signal-
ing than does exposure to primary emitted air 
pollutants.

As revealed through network analysis,  
inflammatory response pathways were modu-
lated in lung cells exposed to air pollutants. 
For example, CCL2, IL‑8, and AP‑1 expres-
sion levels were all increased. CCL2 is a 
chemoattractant protein that recruits mono-
cytes to sites of infection and trauma, and it 
regulates monocyte, dendritic cell, memory 
T cell, and basophil infiltration during inflam-
mation (Charo and Ransohoff 2006). Also, 
increased IL‑8 expression is a biomarker of 
air-pollutant–induced lung inflammation 
(Jaspers et al. 1997; Sexton et al. 2004) and 
is associated with inflammatory lung disease 
(Charo and Ransohoff 2006). We verified the 
increased expression of IL‑8 protein, which 
showed significantly increased levels associated 
with PCA pollutant exposure. Network analy-
sis showed that AP‑1 may regulate the altered 
IL‑8 response pathway. Interestingly, ozone, a 
secondary air pollutant produced within PCA 

mixtures, has been shown to activate AP‑1, 
which potentially regulates ozone-induced 
IL‑8 release (Jaspers et al. 1997). Our results 
are therefore consistent with other studies 
(Jaspers et al. 1997; Sexton et al. 2004) show-
ing that air pollution exposures, such as those 
in urban environments, may influence lung 
cell function by altering the levels of gene tran-
scripts and proteins associated with inflamma-
tory response pathways.

In addition to changes in inflammation-
related proteins, our research revealed changes 
in genomic responses associated with other 
diseases, including cancer, respiratory disease, 
and cardiovascular disease. Air particulate mat-
ter exposure has been clearly linked to cardio
vascular events (Brook et  al. 2004). More 
recent investigations have revealed that cardio
vascular toxicity can also be triggered by gas-
eous air pollutants (Campen et al. 2010; Lund 
et al. 2007). Our network analysis illustrates 
that exposure to gaseous air pollutant mix-
tures modified the expression levels of genes 
that encode proteins associated with cardio
pulmonary effects.

To analyze regulatory mechanisms under
lying changes in gene expression resulting 
from air pollutant exposures, we computation-
ally predicted putative mediating transcrip-
tion factors. We identified six transcription 
factors as potential regulators of the observed 
transcriptional response to both primary and 
PCA pollutant exposures. These transcription 
factors include Oct‑1 and HNF1, whose bind-
ing sites are enriched in genes with decreased 
expression after exposure. The transcription 
factor Oct‑1 targets genes encoding proteins 
involved in cancer-related metabolism, such 
as proteins that contribute to decreased mito-
chondrial function and increased glycolysis 
rates (Kang et al. 2009). In addition, loss of 
Oct-1 can cause cells to become hypersensitive 
to genotoxic and oxidative stress agents (Kang 
et al. 2009). The most significant enrichment 
was for HNF1, which has a known association 
with inflammatory pathway signaling under
lying coronary heart disease (Armendariz and 
Krauss 2009). The transcription factor HNF1 
is also known to control HNF4α transcrip-
tion (Hatzis and Talianidis 2001). In the pres-
ent study, HNF4α was down-regulated by 
PCA pollutant exposure, and HNF4α signal-
ing was enriched within networks associated 
with both primary and PCA pollutants. In 
addition, to gain further understanding of the 
cellular effects of air toxics, we compared our 
PCA pollutant results with those of an existing 
genomics database from a study that evaluated 
human lung cells exposed to cigarette smoke 
(Maunders et  al. 2007). Interestingly, the 
overlapping genes were also enriched for the 
HNF4α pathway. This comparison shows that 
similar regulatory mechanisms may underlie 
cellular responses to diverse air toxics.
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Currently, information relating HNF1 
and HNF4α signaling with lung cell function 
is limited. It is noteworthy that a very recent 
study showed that HNF4α expression is evi-
dent in pulmonary adenocarcinoma tissues 
(Kunii et al. 2011). To our knowledge, our 
study is the first to identify links between the 
transcription factors HNF1 and HNF4α and 
air pollutant responses in lung epithelial cells.

We used two exposure atmospheres in 
our study, with each atmosphere containing a 
large number of chemical compounds. When 
inhaled, these compounds are known to influ-
ence lung function (e.g., ozone) (U.S. EPA 
2006) and cause cancer (e.g., acetaldehyde, 
benzene, formaldehyde) (World Health 
Organization 2010). Because of the complex-
ity of the exposure atmospheres, we could not 
establish which chemicals within the mix-
tures caused the observed cellular responses. 
As shown in our previous study using the 
same chemical starting materials (Sexton et al. 
2004), numerous compounds in addition to 
ozone contribute to PCA pollutant responses. 
Future research will investigate which chemi
cal constituents, or combinations thereof, 
may be driving the observed differences in 
genomic response.

Conclusions
This study applied toxicogenomics-based 
analyses to air chemistry research to reveal 
potential biological mechanisms that may 
underlie health effects induced by air mix-
tures. The genomewide comparison high-
lights a significantly more robust response in 
lung cells exposed to PCA pollutants com-
pared with primary pollutants. Mapping the 
genes affected by pollutant exposures to their 
encoded protein products and analyzing their 
biological functions revealed a relationship 
between air pollution exposure and pathways 
associated with IL‑8, AP‑1, and HNF4α. 
These findings suggest that PCA pollutants, 
to a greater extent than freshly emitted air 
pollutants, may significantly contribute to 
adverse health effects related to air pollution. 
With these findings, we suggest that air toxi-
cology studies and pollution control policies 
need to increase focus on secondary products 
within PCA air pollutant mixtures in order to 
improve public health.
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